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Control low recovery is critical to promise the software quality, especially for large-scale software in production environment.

However, the eiciency of most current control low recovery techniques is compromised due to their runtime overheads

along with deployment and development costs. To tackle this problem, we propose a novel solution, Adonis, which harnesses

OS-level traces, such as dynamic library calls and system call traces, to eiciently and safely recover control lows in practice.

Adonis operates in two steps: it irst identiies the call-sites of trace entries, then it executes a pair-wise symbolic execution to

recover valid execution paths. This technique has several advantages. First, Adonis does not require the insertion of any probes

into existing applications, thereby minimizing runtime cost. Second, given that OS-level traces are hardware-independent,

Adonis can be implemented across various hardware conigurations without the need for hardware-speciic engineering

eforts, thus reducing deployment cost. Third, as Adonis is fully automated and does not depend on manually created logs, it

circumvents additional development cost. We conducted an evaluation of Adonis on representative desktop applications and

real-world IoT applications. Adonis can faithfully recover the control low with 86.8% recall and 81.7% precision. Compared

to the state-of-the-art log-based approach, Adonis can not only cover all the execution paths recovered, but also recover

74.9% of statements that cannot be covered. In addition, the runtime cost of Adonis is 18.3× lower than the instrument-based

approach; the analysis time and storage cost (indicative of the deployment cost) of Adonis is 50× smaller and 443× smaller

than the hardware-based approach, respectively. To facilitate future replication and extension of this work, we have made the

code and data publicly available.

CCS Concepts: · Software and its engineering→ Error handling and recovery; Software maintenance tools.

Additional Key Words and Phrases: Control Flow Recovery, OS-level Traces, Reverse Engineering

1 INTRODUCTION

In a world where operations are increasingly dictated by software, the visibility and prominence of bugs leading
to system failures have escalated, especially in production environments [10]. When software failures happen,
the primary concern of developers is understanding the processes the program undergoes [35, 47]. To this
end, detailed control low is of great value for the later root cause analysis or fault localization. Realizing the
value of control low, researchers have proposed many solutions for recovering the control low from software
failures [4, 14, 21, 45, 47, 54ś57, 60].

However, unfortunately existing control low recovery techniques often fall short of adequately accommodating
the unique cost constraints associated with large-scale software in production environments. In particular, three
types of cost constraints are relevant: Firstly, runtime cost is a critical consideration, as the control low recovery
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Instrument-based Hardware-based Log-based Adonis

Runtime Cost High Low Low Low

Deployment Cost Low High Low Low

Development Cost Low Low High Low

Table 1. Comparison between Adonis and existing control flow recovery techniques.

technique should not substantially slow down themonitored software [8]. This is due to the stringent latency limits
imposed by production environments, where any delays could lead to substantial costs. Secondly, deployment
cost is essential, as the technique should be easily deployable on diferent hardware platforms. Given the wide
variety of devices that software may run on [20], the technique must be versatile enough to work across a range
of systems. Finally, development cost is a crucial factor, which refers to the manual efort required to make the
technique work when the applied software gets updated. The control low recovery technique should require
minimal manual efort to keep up with the fast-evolving production software [10]. Speciically, the technique
should be fully automated, eliminating the need for manual intervention. Unfortunately, existing techniques fail
to balance all three types of costs efectively. Therefore, there is an urgent need for a novel technique capable
of recovering control low information in production environments, whilst satisfying the constraints related to
runtime, deployment, and development costs.
Research Challenges. It is challenging to build a control low recovery technique that achieves moderate
runtime, deployment, and development cost. To the best of our knowledge, as shown in Table 1, traditional
techniques used by existing control low recovery solutions have high cost in production environments. The irst
type is the instrument-based techniques [4, 47], which insert probes at compile time and record the branch taken
by control low statements. This technique is unsuitable for production environments, as it can slow down the
monitored program by over 50% [4], exceeding the acceptable runtime cost. The second type is hardware-based
techniques, which leverage hardware features, such as Intel-PT, to record branch outcomes [14, 21, 45, 54ś56].
These techniques do not meet the requirements of deployment cost because they cannot work when Intel-PT is
unavailable (e.g., in Cloud or IoT environments) and have considerable cost for storing and processing control
low data. The third type is log-based techniques that leverage logs manually created by developers [12, 28, 59, 61].
However, such techniques require software developers to manually improve the quality of logs that can recover
control low accurately. Moreover, the cost can be extremely high to maintain logging code along with the update
of the software. Once the log misses key information of program failures, developers have to add much more
logging code to try to catch the failures. In summary, new control low recovery techniques are needed to meet
the requirements of production environments.
Design Principles. This paper aims to propose a control low recovery technique that satisies runtime, deploy-
ment, and development cost constraints in production environments. Our approach achieves this by following
three design principles: (1) Firstly, our technique is instrumentation-free, meaning it does not add any extra code to
the monitored program, thereby minimizing the runtime cost. (2) Secondly, our technique is hardware-independent,
meaning it does not rely on any speciic hardware features. Therefore, it can be applied in diferent environments
without any modiications, satisfying deployment cost constraints. (3) Finally, our proposed technique is fully
automated, requiring no manual eforts. This satisies the requirement of development cost, as software developers
do not need to expend additional efort manually improving the quality of logs or maintaining logging code. By
meeting all three requirements, our proposed technique ofers a promising solution for recovering control low
in production environments while satisfying runtime, deployment, and development cost constraints.
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Insights. Our technique is motivated by an insight that has been overlooked by existing methods: OS-level
traces, such as dynamic library calls and system call traces, have a strong correlation to the control low of a
program. Applications heavily rely on the OS interface [40], including system calls and shared libraries like glibc.
Therefore, we can recover the control low of programs by linking the call sites of system calls and shared library
calls. Importantly, modern operating systems can automatically collect OS-level traces with less than 5% runtime
overhead [9]. Furthermore, collecting OS-level traces does not require any instrumentation or hardware features.
Therefore, our approach of recovering control low from OS-level traces meets the design requirements of being
instrumentation-free, hardware-independent, and fully automated.
Technical Challenges. Leveraging OS-level traces to recover the control low is a promising approach, but
it poses two non-trivial challenges: (1) Statement-level Ambiguity. It is diicult to identify the call site of
each trace entry inside OS-level traces. Programs invoke the same library functions or system calls at diferent
locations, making it challenging to match items in OS-level traces to their exact call sites. Conventional log-based
techniques, such as Sherlog [57], match a log message to its log printing statement through format string matching
(e.g., log "file ABC" is matched to the format string "file %s"). However, this matching-based method cannot
solve statement-level ambiguity because not all library functions and system calls have distinguishable arguments
like the "format strings." (2) Path-level Ambiguity. Even though we can identify the call site of each trace
entry, recovering the full path is still not straightforward. It is notable that dynamic functions or system calls
are sparse in a program, and there may be code snippets that contain no library functions, as a result, simply
using global symbolic execution can lead to path explosion, while previous summary-based approaches [57] or
context-insensitive approaches [47] may result in inaccurate results.
Design. In this paper, we propose Adonis, a novel and practical approach that leverages OS-level traces to recover
the control low of a program’s execution. Speciically, given a program whose source code may or may not
be accessible, Adonis non-intrusively traces the program by recording its library functions or system calls and
performs a two-stage analysis and outputs the control low. To handle the challenges of statement-level and path-
level ambiguity, Adonis uses several techniques. (1) To handle the statement-level ambiguity, Adonis leverages
both internal information, such as the "format string" argument, and external order information between entries
to identify each entry’s call-site. We also propose a control low graph simplifying approach that masks basic
blocks that will not generate OS-level traces, signiicantly narrowing the search space. (2) To handle path-level
ambiguity, Adonis treats each identiied call-site as a checkpoint and performs a pairwise symbolic execution
between pairs of checkpoints. For each pair, if certain variables are captured by the trace, Adonis looks back to
paths between previous pairs and excludes impossible ones. Finally, Adonis concatenates partial paths between
checkpoints as the output.
Evaluation. We have implemented the prototype of Adonis based on Linux. To show its efectiveness in control
low recovery, we use eleven applications, of which eight are desktop applications covered by previous work
[47, 48, 56] and three are real-world IoT applications (running on a Raspberry Pi). We evaluate the accuracy,
runtime cost, deployment cost, and development cost of Adonis. Accuracy: We found that Adonis is able to
accurately recover control low with 86.8% recall and 81.7% precision. Compared to the state-of-the-art log-based
baseline, Adonis signiicantly reduces false positives by 41.7% and recovers 74.9% of statements that were missed
by the baseline. Runtime Cost: The runtime overhead (cost for tracing) of Adonis is between 2.78% to 3.34%,
which is lower than hardware-based techniques (6.58%). In particular, the runtime cost of Adonis is signiicantly
lower (18.3× lower) than instrument-based techniques. Deployment Cost: Adonis can be deployed in desktop,
IoT, and cloud environments without modiications. Compared to hardware-based techniques, Adonis has a much
lower storage cost (443× lower) and trace processing time (50× shorter). Development Cost: Unlike log-based
techniques, Adonis is fully automated and does not require manual efort when the monitored program upgrades.
Speciically, Adonis requires 18.4× fewer log printing statements than log-based techniques.

We summarize our contributions as follows:

ACM Trans. Softw. Eng. Methodol.
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● We propose Adonis, a novel control low recovery approach based on OS-level traces, following the design
principles of instrumentation-free, hardware-independent, and fully-automated.
● We implement the prototype of Adonis and evaluate it on representative desktop applications and IoT
applications. The results demonstrated its efectiveness in terms of low runtime cost, deployment cost, and
development cost, compared to SOTA approaches.
● We make available the scripts and data used in this study1 to the research community for other researchers
to adopt Adonis or replicate and extend this work.

The rest of the paper is organized as follows: Section 2 proposes a motivating example to show the limitations
of existing techniques and the insights of Adonis. Section 3 introduces the overview of our approach, including the
input, output and the worklow of Adonis. Section 4 introduces the detailed design of Adonis. Section 5 introduces
how we implemented Adonis and the optimization we have applied. Section 6 provides our evaluation on Adonis
compared to existing techniques. Section 7 introduces the related work. Section 8 discusses the threats to validity
and limitations of this work. Section 9 summarizes this paper.

2 A MOTIVATING EXAMPLE

In this section, we use a real-world failure example to explain the limitations of existing techniques and the
insight of our approach. Figure 1 shows our example, which is from abc2mtex, a popular Linux tool to notate
tunes. Here is how it works ś irst, it parses the settings and sets up the program (Lines 27 - 30). Then, it tries
to load the ilename of the input (Lines 32 - 42). After that, it opens the ile to read the inputs (Lines 8 - 23 and
Lines 44 - 45). Finally, it processes the inputs (Lines 46 - 47). Besides the functional code, developers also write
some log printing statements (Lines 18, 37, and 45) to help diagnose failures.

These code snippets contain a stack overlow bug recorded as EDB-47254. The buggy code is at Line 14, where it
copies filename to a temporary variable deined at the beginning of the function. A stack overlow bug happens
when the length of filename exceeds the capacity of the temporary variable, and the program will crash when it
returns (Line 22).
Control low recovery in production: When the program failure happens in production, what presents
to developers is usually a partial picture of the failed execution. Speciically, unlike that in a development
environment where developers can use a debugger to run the program step by step and inspect variables, in
production environments, most failure reports presented to developers contain only a stack trace and a few logs
before failure happens [47]. It would be rather challenging and time-consuming for developers to ind the bug
based on these briely described reports.

To this end, control low information has great value in debugging failures in production environments. In our
example, the control low information can reveal the branch decisions at Lines 11, 13, and 16 and can also reveal
that the program abnormally exits in function openIn. Developers can follow the execution paths that lead to the
failure and quickly identify the buggy code.
Limitations of existing techniques: Despite the value of control low information in debugging, recovering the
control low in production environments is non-trivial considering the runtime, deployment, and development
cost. Currently, there are three categories of control low recovery techniques, i.e., instrument-based techniques,
log-based techniques, and hardware-based techniques.
(1) Instrument-based techniques [4, 47, 48] recover control low by inserting probes at compile time to record

branch conditions [4, 47]. However, these techniques sufer the problem of high runtime cost. In our example, a
full instrumentation to proile executed paths would slow down the program by 47.6% on average (up to 96.6%),
which is typically unafordable in production environments [19].

1https://github.com/PKU-Chengxu/Adonis
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void g_error(char *msg) 

{

(void) fprintf(stderr,"ERROR: %s”, msg);

exit(1);

}

FILE *openIn(char *filename)

{

char savename[10];

if ((strcmp(filename,"stdin")) == 0) 

In = stdin;

else if ((In = fopen(filename,"r")) == NULL) {

strcpy(savename,filename); // stack overflow !!

strcat(filename,".abc");

if ((In = fopen(filename,"r")) == NULL) {

// log could miss the key information

printf("file \"%s\" does not exist\n",savename);

strcpy(filename,savename);

}

return(In); // crashed !!

}

int main(int argc, char **argv) 

{

/* configuration. */

fp = fopen("settings","r");

while (fgets(line,99,fp) != NULL) 

setup(line);

/* load input filename. */

if (command_line) {

if (read_from_stdin) 

strcpy(input, "stdin");

else if (read_from_file) 

strcpy(input, argv[arg++]);

else g_error("read from nowhere.");

}

else {

printf("\nselect input: ");

fgets(input, sizeof(input), stdin);

}

/* read from input file. */

if (openIn(input) == NULL) // crashed but not caught !!

g_error("cannot open input file.");

/* process */

...

}
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EDB-47254

hardware traces

tens of GBs of data

hours or days to decode

instrumentation

Up to 96.6% runtime 

overhead

$ ./abc2mtex longfilename

stack smashing detected: terminated

Aborted (core dumped)

terminal output (log)

system call traces
execve("abc2mtex","longfilename")

... # system calls by the system

openat("settings", "r") = 4

fstat(4) = 0
read(4, 99) = 8 (data="justify")

read(4, 99) = 0

openat("longfilename", "r") = -2 (ENOENT)

openat("longfilename.abc", "r") = 5

analysis report
trace’s callsite:

execve -> L25

...

openat -> L28
fstat,read -> L29

read -> L29

openat -> L13

openat -> L16

must executed:

L10-L11, L13-L16, L22, L28-L30, L32-L33, 

L35-L36, L44, ...

must not executed:
L3-L4, L12, L18-L19, L34, L37, L39-L42, L45, ...

may executed:

...

statement-level ambiguity: 

different statements (L13, 

L16, L28) call the same 

function (fopen).
path-level ambiguity: no 

trace to indicate the 

control flow in L32 – L36.

hardware-independent instrumentation-free fewer maintenance efforts

Fig. 1. A motivating example that shows how OS-level traces help find a real bug.

(2) Log-based methods [57] are limited due to the high development cost. We argue that the cost comes from
two parts. The irst part is the cost of maintaining logging code ś with the rapid evolution of modern software,
developers are required to frequently maintain existing log printing statements and add new ones for new
features. According to previous studies [12, 28], maintaining logging code has proven to be error-prone and
time-consuming. The second part is the cost of adding temporary logging code ś previous studies on logging
practices [36, 58] show that around 60% of failures do not leave any trace in logs, and developers have to spend
a signiicant amount of efort on adding temporary logs to narrow the space in inding bugs. As shown in our
example, the program bypasses two important log points (Line 18 and Line 45) and crashes without leaving any
logs. For the log point at Line 18, it is triggered only when the program fails to open the input ile twice. In other
words, if the irst fopen fails and the second fopen succeeds, the log point at Line 18 is bypassed. For the log

ACM Trans. Softw. Eng. Methodol.
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point at Line 45, it still fails to catch this failure because the call stack is smashed and no longer available in
function openIn. As a result, developers have to add lots of temporary logs to narrow the search space, which
signiicantly increases the development cost.
(3) Hardware-based methods [14, 54, 55] are not suitable due to the heavy deployment cost. On the one hand,

hardware-based methods require speciic hardware and heavy software support. For example, existing work
[14, 54, 55] is typically based on Intel-PT. This hinders these methods from being widely deployed, given the
popularity of nowadays VM-based cloud computing schema [7]. To date, major cloud computing platforms
(including AWS, Google Cloud, Microsoft Azure, and Ali Cloud) do not support Intel-PT in their services due to
the heavy implementation eforts. Besides, IoT devices also do not support hardware-based control low recovery2.
On the other hand, even for the platforms that support Intel-PT, hardware-based techniques are still not friendly
to developers because the output traces would take massive storage (tens of GBs) and hours or days of time to
decode [43].
Our insight:We argue that OS-level traces are promising for recovering crash paths in production environments.
Applications need to constantly call external shared libraries and system calls to accomplish diferent tasks.
Therefore, the call sites of shared libraries and system calls are natural probes for recovering the execution paths
of an application.

Compared with existing techniques, OS-level traces also have moderate runtime, deployment, and development
cost. For runtime cost, since system calls and shared libraries are more complex than single instructions, the
relative overhead for logging OS-level traces is much lower than conventional instrument-based techniques,
which log branch statements. In our example, monitoring OS-level traces slows down the program by only
2.78∼3.34%, which is an order of magnitude lower than existing instrument-based techniques. For deployment cost,
OS-level traces are independent of hardware features. Furthermore, modern OSes have provided full-ledged tools
or utilities [9, 23, 42, 44] to collect OS-level traces. For development cost, OS-level traces can adapt to software
evolution because they are inherently embedded in the program. Speciically, OS-level traces are able to cover
not only the information recorded by logs (e.g., the log printing statements at Lines 3, 18, and 40) but also the
information missed by logs (e.g., the ile open operations at Line 13, 16, and 28).
Bug localization based on OS-level traces:We show how developers can leverage OS-level traces to locate the
bug. Given the monitored system calls of the execution in Figure 1, developers can notice two “openat” events
by reversely checking the monitored trace. These two entries represent two open operations: one failed, and
another succeeded, and both of them try to open a ile with a long ilename. Developers can relate events to
their call sites (Lines 13 and 16) by checking all open-related functions. Then, developers can quickly notice the
abnormal longfilename recorded by the trace and ind the stack overlow bug in Line 14. Moreover, based on
the trace, developers can recover the path before the program crashes (shown as łmust executedž and łmust
not executedž, which is also used by existing work [57] to make the recovered control low more readable.) and
identify that the abnormal longfilename is passed in at Line 36 (read from user’s command line).
Challenges: Despite the advantages of OS-level traces, leveraging them to recover the control low faces two
challenges: (1) Statement-level Ambiguity comes from the fact that diferent statements could invoke the
same lib functions, which makes it diicult to identify the call-site of each trace entry. For example, in Figure 1,
openat may be generated by the statement at Lines 13, 16 and 28, or other code related to the open operation.
Simply testing all possibilities is exponentially time-consuming. (2) Path-level Ambiguity comes from the
fact that there exist code snippets that would not generate any traces. For example, codes at Lines 32-36 will
not generate any trace. To recover the corresponding control low, we need information about the variable
command_line. A naive approach is to apply traditional symbolic execution from the start and ind valid paths to

2Although ARM’s Embedded Trace Macrocell (ETM) in its Coresight architecture is similar to Intel PT, many chip designers choose not to

expose it in the device tree [20, 27].

ACM Trans. Softw. Eng. Methodol.



Adonis: Practical and Eficient Control Flow Recovery through OS-Level Traces • 7

❶ Automatically generate detour functions.   ❷ Monitor function traces. 

① Monitor system call traces. ② Infer function trace using pre-built API model.

❸ Simplify CFG. ❹ Pinpoint the call-site of each monitored event.   ❺ Pair-wise symbolic execution.

Function Route (default)

Syscall Route (alternative)

.so

proxy library

checkpoints
inferred

function trace
syscall trace

function trace

full path

function trace

Program

CFG simplified CFG

pair-wise symbolic 

execution

❶ ❷

❸

❹ ❺

① ②

function route

syscall route

Monitor

Analyze

OR

two-stage analysis

Fig. 2. Workflow of Adonis.

Line 38. This approach would dive into every single branch and try to ind all constraints. It would easily fall into
path explosion considering the complexity of current programs.

3 APPROACH OVERVIEW

We propose the design of a tool, Adonis, that achieves instrumentation-free, hardware-independent, and fully
automated control low recovery for production environments. The input of Adonis includes a target program
whose source code may or may not be available and the OS-level features, such as system call and shared library
call traces, before the crash. The output is the execution path of the input program that leads to the crash. The
high-level worklow of Adonis is shown in Figure 2.
Adonis allows two types of input traces, i.e., the traces of shared library calls (function route) and the traces

of system calls (syscall route). We support these two types of input to cover popular use cases of applications.
By default, Adonis accepts the traces of shared library calls through the function route. However, we also notice
that shared library call traces may not always be available [40]. For example, a self-contained executable that
statically links all libraries does not have shared library call traces. Therefore, Adonis also accepts system call
traces when shared library call traces are not available. Note that both types of traces can be easily collected using
already-existing tools (e.g., function traces can be collected by setting "LD_PRELOAD" environment variable and
system call traces can be collected by tools like strace [44] and sysdig [9], more details in ğ5).

Adonis contains two phases. In the irst phase, it prepares the traces for analysis. In the function route, Adonis
irst scans the program and automatically generates detour functions of shared library functions ( 1 ). Detour
functions will record the internal information of library functions, such as function name, arguments, and return
values. Then Adonis uses the function hooking techniques to monitor the function traces ( 2 ). In the syscall route,
Adonis irst monitors the program’s system call traces using system utilities ( 1 ) and then uses an oline pre-build
API model to infer the corresponding function traces ( 2 ) (details in ğ4.1).

The second phase of Adonis is to analyze the control low, which accepts the monitored or inferred library call
traces and the program’s control low graph (CFG) and outputs the analyzed control low. In this phase, Adonis
uses a two-stage analyzing method to handle the statement-level ambiguity and the path-level ambiguity: (1)
In the irst stage, given library call traces, Adonis pinpoints each library call’s call-site, which we deine as a
checkpoint ( 4 ). Since many basic blocks may not call library functions, we propose a CFG simplifying method
that removes łuselessž basic blocks to improve the searching eiciency ( 3 ) before analyzing the CFGs. (2) In the

ACM Trans. Softw. Eng. Methodol.
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second stage, given the checkpoints that contain the location and program state information, Adonis performs a
pair-wise symbolic execution to recover possible paths between adjacent checkpoints ( 5 ). Adonis handles the
path explosion problem by limiting the search space and fully leveraging the information inside each checkpoint.
Finally, Adonis concatenates these paths and outputs the analyzed full path.

4 DESIGN

In this section, we present the design details of Adonis.

4.1 System Call Trace to Function Trace

Adonis needs to infer the static library call traces when dynamic library call traces are not available, i.e., change
to syscall route (Please refer to ğ3). To this end, we use an API model to infer the static library call traces based
on system call traces.

API model introduction. The API model accepts a system call trace and outputs all possible static library call
traces (i.e., the function traces). Given the generating speed of system calls (52.1/ms according to our experiments)
and the exponentially increasing number of possible function traces, the model should quickly return the result.
To this end, we organize the API model as an eicient information retrieval data structure, i.e., Trie [53], also
called a preix tree. Speciically, Trie is a tree-like data structure, and every node of a Trie consists of multiple
branches. Each branch represents a system call, and each leaf node in the Trie contains the possible function(s)
that would generate corresponding system calls from the root to the leaf.

Figure 3 shows an example of the Trie (i.e., the API model) used in our motivating example, which covers the
related system calls and lib functions used in the code snippets. Starting from the łrootž node, the fstat, read
system calls may be generated by a gets() function (leaf 1), and the write system call may be generated by a
fprintf() or printf() function (leaf 3).

API model construction. Building a Trie needs key-value pairs. Similarly, to build our API model, we need
numerous API-to-Trace mappings (API for value and corresponding system calls for key). We collect these
mappings from massive test cases provided by the glibc library. We instrument test cases by adding probes
between library function calls so that we can obtain precise system call traces generated by each library function,
i.e., the API-to-Trace mapping. Then given these mappings, we follow the Trie’s insertion algorithm [26] to insert
these mappings (key-value pairs) into the Trie pair by pair. Speciically, given a pair of API-to-Trace mapping,
we start from the root node, take the branches that have the same system calls, add a new node if there are no
corresponding system calls, and update the leaf node if necessary.
Figure 3 shows how our simple API model is constructed ś In the beginning, the Trie is empty, i.e., there is

only a root node. We then insert API-to-Trace mappings pair by pair. For pair <fopen(), openat>, there is
no edge corresponding to openat, so we insert a new edge (openat) into the Trie and its leaf node (leaf 5) is
fopen(). Then for pair <fprintf(), write>, we insert a new edge (write) and a new node (leaf 3). For pair
<printf(), write>, we could ind an edge corresponding to write, so we update the corresponding node (leaf
3) to printf/fprintf, which means that the write system call could be generated by printf or fprintf. For
pair <fgets(), fstat read>, we insert a new node (leaf 1) that is two steps from the root. For pair fstat(),
fstat, we insert a new node (leaf 2) to distinguish from leaf 1.

We build our API model using more than 10K API-to-Trace mappings, which ensure that the constructed API
model could cover more than 99% of the lib functions and system calls in our benchmark. For new lib functions
or system calls (like the ones from system update), one can just collect API-to-Trace mappings and update the
Trie. Once the API model is built, there is no need to store these API-to-Trace mappings. We also collect some
additional mappings from real programs (like nginx). These łrealisticž mappings could make the Trie robust to
the noise system calls from the system itself. For example, we have witnessed lots of brk and switch system
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N/A
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1

leaf

2

leaf

3
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Functions-Syscall pairs
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API model fgets()

fstat()

fprintf()/printf()
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...

insert

pair by pair

Monitored system calls

openat, fstat, read, read, 
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API model

Inferred lib functions

1. fopen(), fgets(), fgets(), 

fopen(), fopen()

2. fopen(), fstat(), fgets(), 

fgets(), fopen(), fopen()

openat

leaf

5
fopen()

Fig. 3. An example of how API model works. Since there are extensive function-to-syscall mappings, we show only a small

portion to illustrate the API model’s construction.

calls that correspond to no functions. These system calls come from page fault exceptions and context switches,
and the Trie could correctly ignore them once accepting these łrealisticž mappings (please refer to more details
about how Adonis handles these system calls in ğ8).

API model usage. Given monitored system calls, using the API model to infer the corresponding lib functions
is a process of querying values (functions) by keys (system calls). Speciically, we start from the root node and
take the corresponding branches until we reach the leaf node, and do the former operations recursively until all
the system calls in the given trace have been inferred. Note that there could be more than one inference result,
which means that all of these results could generate the given system calls.

We use the monitored system call trace in our motivating example to illustrate how the previously built API
model works. As shown in Figure 3, given a trace containing 6 system calls, i.e., openat, fstat, read, read, openat,
openat, the API model processes them sequentially. For openat, the Trie outputs fopen by following the edge of
openat. For fstat, the Trie follows the edge of fstat and reaches a node that is not a leaf node (parent of leaf 1 and
leaf 2). It then checks whether the succeeding system call could match the following edges (read and N/A). In our
example, both the edges can be matched thus the Trie outputs two possible function traces. Similarly, The Trie
processes the succeeding system calls until all of them have been inferred. Finally, our model outputs two sets of
inferred lib functions.
API-model proile. In general, the API model, i.e., the Trie, used in the syscall route is a tree-like structure

with a shallow depth and a relatively large width. The shallow depth indicates that each libc function will typically
call only a few system calls (typically just one). The width relects the number of system calls involved. The size
of the Trie is 4.0KB. The depth of the Trie is 5. The width of the Trie is 68. Among the involved system calls,
the "write" system call has the most functions grouped together at the leaf, which is 7. Note that more than
seven functions could generate the "write" system call. However, only seven of them are used by our evaluated
applications.
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4.2 Execution Paths Recovery

Adonis recovers the execution paths of crashes from the dynamic or static library call traces. The key challenge is
to handle the ambiguity of OS-level traces (i.e., statement-level and path-level ambiguity) while managing the
analysis eiciency. To address this challenge, we design a two-stage approach that infers the execution paths
with moderate analysis cost.

On the high level, in the irst stage, Adonis irst simpliies the program’s CFG to accelerate the analysis and
then performs a block-level inter-procedural analysis to pinpoint the call-site of each monitored event. We call the
pinpointed call-sites the checkpoints. In the second stage, Adonis performs inter-procedural pair-wise symbolic
execution to recover paths between checkpoints.
Pinpoint the call-sites. It is non-trivial to ind the precise call-site for each monitored event due to the statement-
level ambiguity, i.e., diferent statements could call the same lib functions. It can be regarded as search problem
trying to ind the longest match in a huge graph. Before we introduce our solution, we irst formalize the task as
a search problem in directed graphs.

Given a program’s sCFG, we formulate it as a directed graph� ≙ (�, �), where the set of nodes � denotes the
statements (or basic blocks) in sCFG, and the sets of edges � denotes the intra-procedural and inter-procedural
edges in sCFG. Given a function trace (which can be monitored from the function route or be inferred from
the syscall route) with � events, we formulate it as a sequence � ≙< �1, �2, �3, ..., �� >, and each event �� as a
tuple (� ����� , ��� ,��� ), where � ����� is the corresponding function, ��� represents the function’s arguments, ���
represents the function’s return value.

Now we can formulate the task as the following problem: given a simpliied CFG � and a function trace � , we
call � a valid pinpointing result if there exists a valid path � ≙< �0, �1, �2, ... >, such that the function calls of � is
equal to the functions in � . To solve the problem, a naive approach is to start from the program’s entry �0 and
then traverse and test successor nodes until a valid path that matches the trace is found. However, this approach
is inaccurate because it does not use the information that lies in each event � , i.e., arguments �� and return values
�� . As a result, this approach would require more analysis time or get worse results in precision/recall. Intuitively,
some arguments of library functions are usually constant values that can be easily obtained through little analysis,
e.g., the format string in printf and lags and mode in open. Based on this observation, we propose the following
algorithm as shown in Algorithm 1.

Algorithm 1: ��������(�,� ): pinpoint the call-sites of given trace

Data: simpliied CFG � , function trace �
Result: valid pinpointing result �

1 �� ← � ��� ���� �� � ����� ���� � ��� �

2 � ���� ← ��� � ������� � � ��
3 ���ℎ� ← �����ℎ ���ℎ �� � ����
4 � ≙ ����()

5 for ���ℎ ∈ ���ℎ� do
6 �, � ← ���ℎ′� �����⇑��� ����� �� �

7 � ← (� ���� , �,�) // treat � ���� as a new event.

8 ������� � � ← � ︁ ∶ �︁ + ︁�︁ +� ︁ � ∶ ︁

9 �.������(��������(�, ������� � �))

10 return �
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We implement Algorithm 1 using the Breadth First Search (BFS) algorithm with caching optimization. The
high-level idea of Algorithm 1 is to irst ind the most deinite node (�� at Line 1). A deinite node is a node in the
CFG that can be logically linked to a speciic event in the monitored trace. For instance, an output statement,
printf("file %s ABC does not exist", filename) can be considered as a deinite node, since it can be
traced back to a "write" event that writes the data "file ABC does not exist". Conversely, given this
"write" event, the corresponding deinite node (i.e., the printf statement in the example) is the call-site that we
aim to identify. To achieve this, we analyze the parameters of library functions and match the constant values
(e.g., "file %s ABC does not exist" in printf statement) to the ields in events (e.g., "file ABC does not

exist" in the write event). Currently, the events used to determine the deinite node are related to output (like
printf, fprintf, etc.) and ile control (like fopen, opendir, etc).
There may be multiple deinite nodes and Adonis needs to select one of them as the starting point for path

recovery, preferably the one with the highest degree of certainty or the łmost deinite nodež. To determine this,
Adonis calculates the priority of each deinite node. Generally, a node’s priority depends on the complexity of
its parameters. If a node’s parameter is a complex string rather than a simple string or integer, it may be more
diicult to match with an event. Therefore, if such a node is successfully matched and conirmed as a deinite
node, it should be assigned a higher priority.

If Algorithm 1 fails to identify a deinite node on Line 1 (which is rare in our experiments), Adonis will attempt
to locate the call site by searching from the program’s entry point. This means that the irst node that matches the
irst trace item will be treated as the deinite node. Moreover, if the stack trace of the failed execution is available,
Adonis can perform a reverse search starting from the crashed function.

Once the deinite node is determined, we expand from it and search for a valid path in the function (� ���� )
such that the trace generated by this path can match part of the whole trace. Then, we consider the matched
partial trace as a whole, whose function name is � ���� . So we can replace this partial trace with a new event in
the whole trace (Lines 6-8). Then we recursively call Algorithm 1 on the newly constructed trace (Line 9) until all
the events are matched.
Pair-wise symbolic execution. After we pinpoint the call-site of each monitored event, the next step is to
recover the full path. Note that we should use the original CFG instead of the sCFG (the pinpointing result on
sCFG can be seamlessly ported to CFG). In this step, we encounter the challenge of path-level ambiguity, i.e.,
for some code snippets, there is no trace to indicate the control low. A naive approach that performs symbolic
execution on the whole program would easily fall into path explosion. We notice that the call-sites in previous
step have divided the programs into small subroutines, on which it is afordable to perform symbolic execution.
Thus we propose the pair-wise symbolic execution to fully leverage the information in traces while managing the
search space. In Figure 4, we use the motivating example to show how pair-wise symbolic execution is conducted.

Inspired by the concolic execution [25, 52], the high-level idea of pair-wise symbolic execution is to (1) recover
paths iteratively instead of all at once and (2) try to use concrete values recorded in traces instead of calculating
symbolic constraints. Speciically, we refer to each pinpointed call-site as a checkpoint ���� . We refer to the
process of searching for valid paths between a pair of adjacent checkpoints < ����� , �����+1 > as one step. In
each step, there are two types of constraints used: (1) the irst type is the trace constraint that is imposed by the
concrete call-sites and corresponding (function, arguments, return value) tuples. For example, in Figure 4, for
ckpt L28, we monitored a trace fopen("settings","r") = 4 and the trace constraint for ckpt L13 is fp ==

4 where fp is the variable that accepts fopen’s return value. (2) the second type is the historical constraint that is
the path constraints accumulated up until the current checkpoint. We will introduce how Adonis maintains the
historical constraint when performing pair-wise symbolic execution.

Adonis recovers the full path step by step from the starting checkpoints to the end. In each step:
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ckpt L28 -> ckpt L29:

fopen("settings", "r") = 4

fgets(4, 99) = 8

ckpt L29 -> ckpt L29:

fgets(4, 99) = 8

fgets(4, 99) = 0

ckpt L29 -> ckpt L13:

fgets(4, 99) = 0

fopen("longfilename","r") = -2 

ckpt L13 -> ckpt L16:

fopen("longfilename","r") = -2

fopen("longfilename.abc","r")=5 

ckpt L16 -> ckpt exit:

fopen("longfilename.abc","r")=5

Fig. 4. An example of how Adonis performs pair-wise symbolic execution.

(1) Adonis checks if there is only one path from ����� to �����+1. If so, this path is the result for this step
and Adonis symbolically executes the program from ����� to �����+1 and updates the historical constraint
accordingly. For example, in Figure 4, there is only one path from ckpt L28 to ckpt L29. In this case, Adonis
regards this sub-path as the result of this step and update the constraint, i.e., add a fp == 4 constraint.

(2) If there is more than one path, Adonis irst uses the pinpointing information to reduce search space, i.e.,
possible paths. Note that there are some basic blocks that are important (would generate trace) but not
pinpointed as checkpoints. We consider these basic blocks as non-executed and this information can help
reduce the search space without performing symbolic execution. For example, for the step from ckpt L16

to ckpt exit, basic block L18 (a printing statement) is considered non-executed. So the path L16 -> L18

-> L19 is excluded.
(3) After reducing the search space, Adonis tries to ind valid paths according to the historical constraint and

trace constraint. Speciically, for each branch,Adonis uses the existing constraints to try to deduce the branch
condition. If it can deduce the condition, it will take the corresponding branch. If not, it will symbolically
execute each branch and update the constraint. Finally, the valid paths (the ones whose constraints is
solvable by SMT solver) will be considered as the results of this step. For example, there are multiple paths
from ckpt L29 to ckpt L13. After the symbolic execution, only the path L29 -> L32 -> L33 -> L35 ->

L36 -> L44 -> L11 -> L13 is valid. Path to L34 is excluded (unsatisied) because it assigns the string
"stdin" to the variable input, but it should be "longfilename" according to the trace constraint at ckpt
L13.
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(4) If there are more than one valid path in this step, Adonis cannot determine which path is truly executed.
On the one hand, it would report the uncertain basic blocks as may-executed. On the other hand, it would
maintain the historical constraint. Speciically, it performs a live variable analysis [49] and reset the
constraint to the live variable if it is used by more than one valid path. We perform this operation to avoid
the case that wrong constraints are passed as historical constraints to succeeding checkpoints.

The pair-wise symbolic execution is efective and eicient. It is efective because it utilizes the locality of the
program. We ind that nearby checkpoints can determine most conditions, thus greatly decreasing the search
space. It is eicient because it tries to use concrete values stored in traces to reduce uncertain searches.
We also take several strategies to avoid path explosion. First, when we encounter a function call, similar

to previous work [57], we implement strongest observable necessary condition [16] for constraint conversion.
It guarantees that the converted constraint is a necessary condition of the original one by keeping only the
caller-observable conditions such as return values, function arguments, and global variables. Second, we limit the
depths of the call stack to prevent an ininite loop. Third, we also limit the search time for each step. Once it
times out, it will regard all the paths in the unsearched space as may-executed.

Finally, paths between pairs of checkpoints will be concatenated as possible full paths. Adonis cannot guarantee
that there is only one feasible path left after the pair-wise symbolic execution. So the output of Adonis (after
the pair-wise symbolic execution) is a rough but usable control low (organized as must/must not/may executed
basic blocks). As we have described in ğ1 and illustrated in ğ2, this control low provides valuable information for
failure diagnosis.

5 IMPLEMENTATION

Overall implementation.We implement the prototype of Adonis on Linux system based on EOSAFE [30], a
state-of-the-art symbolic execution engine for WebAssembly. Our implementation contains ∼8.2k lines of Python
code. We choose WebAssembly because it is a low-level language that can be translated from other mainstream
programming languages, e.g., C, C++, Go, Rust, etc. and binaries without source code can also be lifted to LLVM
IR and then recompiled to WebAssembly [37]. Adonis does not rely on the source code to perform its analysis,
even for the symbolic execution. All of Adonis’s analysis is performed on the WebAssembly (wasm) binary code.
In the function route, Adonis collects shared library call traces to recover the control low. To collect such

traces, Adonis automatically generates a proxy library for the given program by following the steps below: it
irst uses RetDec [3], an LLVM-based machine-code decompiler, to scan the program and identify used dynamic
functions and their signatures. Based on the signature, Adonis then generates a detour function for each identiied
dynamic function. The detour functions are then compiled to the proxy library, which is a shared object (with
the .so suix) accounting for 10 - 100 KBs of storage (depending on the number of detour functions). Finally,
Adonis modiies the LD_PRELOAD environment to direct calls to the original functions to our detour functions
to collect calling traces. The process of generating the proxy library takes 1-5 minutes.
In the syscall route, Adonis collects system call traces to recover the control low. To collect such traces, we

use sysdig [9] to monitor the given program and implement a trace parser. What is more, Adonis needs the
oline-built API model (i.e., the Trie in ğ4) to infer a system call trace to its possible function traces. Building
such an API model takes around 10 minutes and the built API model accounts for less than 10 KBs of storage and
can be re-used in the analysis of diferent programs.
CFG Simpliication optimization. This is a preceding step before Adonis pinpoints the call sites. We design
this step to improve the eiciency of the pinpointing step. Speciically, considering that OS-interface or lib
functions are not called intensively, there are many ordinary statements that will not generate any OS-level trace
lying between important statements that could generate traces. According to our experiments, these ordinary
statements account for the majority of the code (>80% on average) but will not generate any OS-level traces. As a
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Fig. 5. CFG and sCFG of code snippets in the motivating example.

result, directly searching (i.e., pinpointing) the call-sites among the original CFG is ineicient because of the noise
branch, loop, and function calls from ordinary statements. So, we are motivated to irst perform a simplifying
operation to remove unrelated but massive ordinary statements from the original CFG and remain a backbone
(which we call an sCFG) that could generate the same trace as the original CFG.

As shown in Figure 5, we demonstrate the high-level idea of the simplifying operation using the CFG and
sCFG of our motivating example. For any path in CFG, we can ind a corresponding path in sCFG so that both
paths generate the same OS-level traces. What is more, sCFG contains much fewer nodes than CFG because most
ordinary statements or basic blocks have been removed. As a result, searching (pinpointing the callsites) based
on sCFG instead of CFG will greatly improve the eiciency and will not decrease the correctness of the results.
Next we introduce how to simplify a CFG to get its sCFG. First, we deine that a statement (or a basic block)

is ordinary when it will not generate any OS-level traces, otherwise, it is important, which means that it could
generate OS-level traces when executed. Note two types of statements (or basic blocks) are important, i.e., the
ones that directly call lib functions and the ones that call functions that contain important statements (or basic
blocks). Given a function’s CFG, Adonis takes the following steps to simplify this CFG.

(1) Topological sort all edges in the CFG.
(2) Traverse the sorted edges. For any edge � → � that � is not the function’s Entry node and � is not the

function’s exit node, if A or B is ordinary and there exists only one path from A to B, do the following
remove operation:

(a) Remove the edge � → � from CFG so that on of the nodes would be removed latter.
(b) Remove one node (basic block or statement) that is ordinary from CFG (suppose � is ordinary and

removed), and modify all edges pointing to or starting from � to point to or start from �.
(c) If there are redundant edges, only one of them is retained.

(3) Repeat step 1 and 2 until there is no edge to remove.
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Fig. 6. An example of how CFG is simplified.

Figure 6 shows an example of how function openIn’s CFG is step-by-step simpliied. For edge L11 → L12,
both L11 and L12 are ordinary, so one of them should be removed. Here L12 is removed because L11 is the
function’s entry node. For edge L13→ L14, L13 is important and L14 is ordinary, so L14 is removed. Similarly,
L19 is removed when processing edge L18→ L19. Then the simpliication inished because there is no edge to be
removed.

This CFG simpliication optimization could improve the eiciency of the afterward pinpointing step (the step in
ğ4.2), especially when the analyzed program is complex and has huge functions. For example, sqlite3VdbeExec()
is a huge function in sqlite3 with 1331 basic blocks. Our optimization reduces the number of basic blocks to
497 (reduced by 62.7%), leading to a smaller search space when pinpointing the call-site. According to our prior
experiments, without the CFG simpliication optimization, Adonis will take more than 12 hours to inish the
pin-pointing step for a complex program like sqlite3. However, after adding the optimization, it can inish in 30
minutes.

6 EVALUATION

We focus on evaluating whether OS-level traces are suicient to accurately recover control low for programs in
production environments with moderate runtime, deployment, and development cost. In particular, we answer
following four research questions:

RQ 1: How accurate is Adonis in control low recovery?
RQ 2: What is the runtime cost of Adonis?
RQ 3: What is the deployment cost of Adonis?
RQ 4: What is the development cost of Adonis?

6.1 Experimental Setings

Benchmarks: Our benchmark contains 11 real applications or tools, of which 8 are desktop applications used
by previous work [47, 55] and the other 3 are IoT applications or libraries selected from awesome-open-iot [1],
a curated list of open source IoT frameworks, libraries and software. The three IoT applications we select are
the most popular ones in the list implemented in C. For each application, we use its default test cases as the
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Applications Description LOC BBs functions

tcas SIR application [17] 173 163 20
replace SIR application [17] 563 437 53
tot_info SIR application [17] 564 231 26
abc2mtex Music notation 4,764 4,328 462
gzip Linux utility 8,114 3,704 236
space ADL interpreter 9,563 3,895 253
grep Linux utility 15,460 7,121 177
microcoap CoAP server 809 795 11
mqtt-sn-tools MQTT for networks 1,675 1,258 37
libmodbus Modbus protocol 5,435 1,996 64
sqlite3 Database management system 236,528 86,852 2,930

Table 2. Evaluated applications.

benchmark. If the number of test cases is too large, e.g., space has 13,525 test cases, we randomly choose 100 of
them. We provide information about CFGs for each application in Table 2, including lines of code, numbers of
functions, and basic blocks.
Baselines: We choose four baselines to compare against, representing the state-of-the-art hardware-based,
instrument-based, and log-based methods that can recover the control low. The irst one is Bunkerbuster [56], a
bug hunting framework based on Intel-PT. Bunkerbuster symbolically reconstructs program states leveraging the
hardware traces and partial memory snapshots (hardware-based method). The second baseline is gcov [34], a
commercial tool to test program coverage widely used by LLVM and GCC (instrument-based method). The
third baseline is Pensieve [60], a tool for failure reproduction. Pensieve reconstructs failure reproduction steps
based on log iles (log-based method). Since Pensieve is not publicly available, we reproduce it in our platform.
The fourth baseline is s-VPA [47], which is a control low recovery tool based on selective instrumentation
(instrument-based method). Note that we only compare s-VPA with Adonis in terms of accuracy, because we
cannot ind the exact value of the three types of cost in the paper. For example, the analysis time (measured as
deployment cost) reported in the paper is a relative value.
Experimental environment: To make the experiments close to reality, we set up two environments, i.e., (1) a
tracing environment where applications run on ordinary devices, and (2) an analysis environment where traces
are analyzed on more powerful devices. For the tracing environment, we use two hardware platforms, including
an x86-64 desktop running 8 desktop applications and an ARM raspberry pi 3B running 3 IoT applications. The
desktop is equipped with an Intel i7-9750H CPU, 16GB memory, and 1TB storage and the raspberry pi is equipped
with a 1.2GHz Broadcom BCM2837 CPU, 1GB memory, and 16GB storage. For the analysis environment, we
perform analysis on an x86-64 server. The server is equipped with an Intel Xeon E5-4620 v2 CPU, 32GB memory,
and 3TB storage. Both the desktop and server run a 64-bit Ubuntu 18.04, and the raspberry pi runs a 64-bit
Raspberry Pi Bullseye OS.

6.2 RQ 1: Accuracy

We irst evaluate whether OS-level traces can accurately recover control low of programs. To answer this RQ,
we compare Adonis to Pensieve [60], a log-based technique that recovers control low information, and s-VPA
[47], a path recovery tool based on selective instrumentation. We omit the Gcov and Bunkerbuster since they are
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Block-level Accuracy Recall Precision

s-VPA Pensieve
Adonis

(function)
Adonis
(syscall)

Pensieve
Adonis

(function)
Adonis
(syscall)

Pensieve
Adonis

(function)
Adonis
(syscall)

tcas 88.1% 72.2% 95.7% 94.8% 71.5% 92.7% 92.7% 96.0% 96.2% 96.2%
replace 93.1% 71.5% 93.5% 93.0% 68.5% 89.4% 89.4% 94.4% 97.6% 97.3%
tot_info 97.9% 76.7% 98.5% 97.2% 70.3% 95.5% 94.1% 80.2% 93.3% 86.1%
abc2mtex - 42.8% 76.7% 73.9% 44.7% 76.6% 71.7% 83.5% 94.9% 92.4%

gzip 61.9% 20.3% 67.5% 53.9% 28.8% 98.6% 99.4% 40.1% 78.4% 74.9%
space 58.6% 38.5% 70.2% 64.4% 47.3% 73.1% 75.2% 63.7% 76.5% 67.6%
grep 48.3% 22.7% 54.5% 53.6% 33.2% 92.5% 91.6% 43.2% 52.9% 50.8%

microcoap - 55.2% 86.7% 86.0% 47.4% 79.3% 71.9% 79.2% 86.1% 86.1%
mqtt-sn-tools - 44.3% 87.7% 84.6% 35.7% 90.6% 81.8% 70.5% 80.0% 76.3%
libmodbus - 48.3% 85.1% 79.0% 37.5% 92.2% 88.3% 72.5% 83.0% 77.7%
sqlite3 - 43.3% 74.5% 67.2% 35.5% 74.8% 70.3% 45.5% 59.5% 57.4%

Average 74.6% 48.7% 81.0% 77.1% 47.3% 86.8% 84.2% 69.9% 81.7% 78.4%

Table 3. Block-level accuracy, recall, and precision of Adonis and baselines.

designed to have 100% accuracy. However, these two techniques have high runtime or deployment overhead for
production environments (ğ6.3 and ğ6.4).
We measure three metrics, which are block-level accuracy, precision, and recall. We deine the block-level

accuracy as the ratio of basic blocks that can be deinitively categorized as łexecutedž or łnot executedž. Recall is

measured by #��
#��+#��

and precision is measured by #��
#��+#��

, where #�� is the number of basic blocks executed
in the path, #�� is for executed but not in the path, and #�� is for in the path but not executed. We select
these metrics because they intuitively relect the accuracy of the recovered path and are widely used in related
work [47]. Only block-level accuracy is reported in the paper of s-VPA, so we only show its block-level accuracy
and omit the other two metrics. We build the ground truth by running Gcov. The results are shown in Table 3, in
which we used arithmetic means instead of geometric means because there are test cases that no log messages
get output by the application, making Pensieve cannot recover any control low. As a result, its accuracy is 0 for
these test cases. Including these zero values to calculate the total geometric means would also result in a mean
value of zero. We also cannot remove these test cases because it is unfair to Adonis.

Block-level accuracy: We observe that, Adonis (77.1% and 81.0%) substantially outperforms Pensieve (48.7%).
The control low recovered by Adonis can not only cover the results of Pensieve but also cover 74.9% statements
missed by it. This indicates that OS-level traces are able to record more valuable information compared to logs.
We will show more details when we evaluate the recall and precision. Adonis also outperforms s-VPA (74.6%). To
handle the runtime cost of instrumentation, s-VPA selectively instrumentation the program, i.e., it only traces
executed functions and paths of functions in the call stack [48]. As a result, this selective instrumentation provides
limited information of the paths of functions outside the stack (i.e., functions that have been called but popped
from the call stack). By contrast, the OS-level traces used by Adonis cover the information of these functions thus
Adonis could get more accurate results.
Recall and precision: The results are shown in Table 3. Overall, Adonis outperforms Pensieve by 37.12% to

39.56% on recall and 8.21% to 11.56% on precision. Pensieve gets less efective in two aspects. First, in production
environments, log levels are typically suppressed for brevity concerns [11]. For example, in sqlite3, the C
preprocessor variable SQLITE_DEBUG is not set in the release version, and the DEBUG level logs would not be
output. As a result, logs often record only limited paths or variables, leaving broad space not traced. Second, to
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Fig. 7. Runtime overhead of Adonis and baselines.

improve the scalability and eiciency, Pensieve skips a vast majority of the code paths by focusing on instructions
causally relevant to the failure. By contrast, the OS-level traces, used by Adonis, not only cover the logs written
by developers by recording I/O events, but also contain valuable program states that could be missed by logs, e.g.,
libmodbus, as a communication protocol library, suppresses many log points in the release version (the version
used in production). Pensieve sufers a low recall (37.5%) due to the aforementioned two aspects. Meanwhile,
Adonis can still efectively recover the path based on the traced events and achieve a much higher recall (92.2%).

Ans. to RQ 1: Adonis can recover the control low with 81.0% block-level accuracy, 86.8% recall, and
81.7% precision. Adonis substantially outperforms the state-of-the-art log-based control low recovery
methods in terms of the accuracy. Speciically, Adonis not only covers the execution paths recovered by
Pensieve but also recovers 74.9% of statements missed by it.

6.3 RQ 2: Runtime Cost

In this RQ, we evaluate if the runtime cost of Adonis is low enough for production environments. We measure a
tool’s runtime cost by calculating the slowdown of an application when it is being traced by the tool compared to
when it is not. For example, the runtime cost of łAdonis syscallž is the slowdown of an application when Adonis
collects the application’s system call traces, which does not contain the overhead of call trace inference. Similarly,
the runtime cost of łAdonis functionž is the slowdown of an application when it is hooked by the proxy library
generated by Adonis. We show the results in Figure 7. We do not include Pensieve because its runtime overhead is
zero by design.
On average, Adonis induces 3.34% runtime overhead when tracing dynamic library functions and induces

2.78% overhead when tracing system calls, which is lower than Bunkerbuster (6.58%) and Gcov (49.4%). Note that
Intel-PT is designed to minimize the runtime overhead of control low recovery [55]. Therefore, the runtime cost
of Adonis is acceptable in production environments.
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Fig. 8. Analysis time and storage cost of Adonis.

Bunkerbuster Pensieve Gcov
Adonis
(syscall)

Storage Cost 1.6 GB 2.2 MB 9.2 MB 7.8 MB
Analysis Time 35 hours 31.5 mins - 38.6 mins
Deployment on

Diferent Platforms
Hard Easy Easy Easy

Source Code
Dependency

No Yes Yes No

Table 4. Summary of the deployment cost of Adonis and baselines.

Our evaluation also shows that Gcov, a full instrumentation tool, may introduce a slow down of more than 50%
(18.3× higher than Adonis) to programs. This overhead is too high for production environments, particularly for
delay sensitive applications[19]. Note that many instrument-based approaches do partial tracing at the cost of
accuracy. So the comparison in this RQ cannot be stretched to all instrumentation based tool.

Ans. to RQ 2: Adonis has moderate runtime cost for control low recovery in production environments.
On average, Adonis induces 3.34% and 2.78% overhead to trace dynamic library functions and system
calls respectively. This overhead is lower than Bunkerbuster (6.58%), the state-of-the-art hardware-based
method designed for reducing the runtime cost of control low recovery. Moreover, this overhead is 18.3×
lower than Gcov, the commercial instrument-based method.
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6.4 RQ 3: Deployment Cost

We evaluate how Adonis reduces deployment cost by conducting experiments from four aspects. First, we evaluate
the ease of deploying Adonis on diferent hardware. In this experiment, we measure whether Adonis can run in
desktop, cloud, and IoT environments, respectively, without heavy modiications. Second, we evaluate the ease of
deploying Adonis when source code is not available. Third, we measure the storage overhead to keep the logs of
Adonis. Fourth, we measure the analysis time to process the logs of Adonis. The analysis time evaluates whether
Adonis requires extra computational resources to analyze generated logs. The results are shown in Figure 8 and
Table 4.

Deployment across diferent hardware platforms:Adonis achieves the same block-level accuracy, precision,
and recall across the desktop, IoT, and Cloud environments without any modiication. In other words, Adonis can
be directly deployed in diferent hardware platforms without any extra eforts. On the contrary, Bunkerbuster
only works in the desktop environment as it depends on Intel-PT.
Dependency on source code:We further evaluate Adonis by measuring its block-level accuracy, precision,

and recall on the executables of our test cases without debugging information (e.g. with the the -g coniguration
during compilation). Our experiment shows that Adonis achieves the same values. On the contrary, Pensieve and
Gcov fail because they require source code.

Storage Cost: According to Figure 8, Adonis requires 3.2 ∼ 27.6MB to keep the OS-level traces and the mean
value is 7.8MBs. In contrast, Bunkerbuster requires 1.6 GB, Gcov requires 9.2 MB, and Pensieve requires 2.2 MB.
The storage cost of Adonis is low enough for production environments considering that it is similar to the cost of
popular logging practice, i.e., the cost of Pensieve. Our results also show that the storage cost of Bunkerbuster is
three orders of magnitude higher than others. This is because Intel-PT is agnostic to upper level OS designs like
process and context switch and it will simply record all instructions executed by the CPU. As a result, developers
should deploy more storage when using hardware-based methods.
Analysis Time: According to Figure 8, the analysis time of Adonis is 1.2 ∼ 215.8 mins, which is positively

correlated with the length of the trace (illustrated as storage cost). And the mean value of Adonis’s analysis time
is 38.6 mins, which is similar to Pensieve. Adonis’s analysis time is practically small considering that developers
spend 49.9% of their programming time (several hours) in debugging [11]. On the contrary, Bunkerbuster needs 35
hours to decode and process the trace. It means that developers need to deploy around 50× number of machines
to achieve a similar analysis time, which increases the deployment cost of Intel-PT based techniques.
We also notice that in terms of the deployment cost, Pensieve is comparable to Adonis. However, it is also

notable that according to RQ 1 and RQ 4, Adonis has better accuracy and lower development cost.

Ans. to RQ 3: Adonis has reasonable deployment cost for a production environment. First, It can be
deployed in desktop, IoT, and cloud environment without any modiications. Second, the storage cost
(7.8MB on average) and analysis time (38.6 mins on average) of Adonis is moderate and signiicantly
smaller (443× smaller for storage cost and 50× smaller for analysis time) than Intel-PT based techniques,
saving a large amount of storage and computational resources. Further, Adonis does not require source
code while the log-based and instrument-based baselines are source code dependent.

6.5 RQ 4: Development Cost

To evaluate the development cost of Adonis, we evaluate the development eforts to adapt Adonis to a new version
of software. As a comparison, we also measure the extra log printing statement needed for log-based techniques
to achieve the same level accuracy as Adonis.
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Development eforts to adapt to software update: In our experiment, Adonis can adapt to the software
updates with negligible development eforts. Given a new version of the program,Adonis only needs to re-generate
the proxy library to hook previously uncovered library functions. This process is fully automated so there are no
extra development eforts for developers when using Adonis. On the contrary, for Pensieve, developers need to
manually insert logging statements and its eforts depend on the complexity of the new features.
Extra log printing statements: In our experiment, Adonis records 393.3 log events on average. On the

contrary, Pensieve generates only 21.3 log events and around 30% of the test cases output no logs. To achieve
the accuracy similar to Adonis, developers need to insert 18.4× (393.3/21.3) log printing statement for log-based
techniques.

Ans. to RQ 4: Adonis has reasonable development cost for a production environment. On the one hand,
Adonis is fully automated while log-based methods rely on developers to manually insert log printing
statements. On the other hand, a log-based technique requires developers to add 18.4× of new code to
achieve the same accuracy as Adonis.

7 RELATED WORK

Our work is particularly related to two streams of literature: control low recovery and OS-level traces analysis.
Control low recovery. Control low recovery has been widely applied in many software development tasks, i.e.,
software failure analysis [4, 14, 21, 45, 47, 54ś57, 60], service contexts understanding [38, 39], etc. Some typical
methods can be categorized into the follows. Instrument-based methods insert probes in the monitored programs
at compile time, to record or measure executed paths [2, 4, 13, 46, 48, 51]. The main limitation of instrument-based
methods is the high runtime cost. Although there are a few methods that aim to reduce the runtime cost, they are
semi-automated, and thus still have high engineering cost [2, 13, 48, 63]. Speciically, developers need to manually
specify targeted code snippets [2, 48] or iteratively run the programs multiple times [13, 63]. There are two
pieces of instrument-based work (i.e., s-VPA [47] and Traic [51]) that are close to Adonis. For s-VPA, its analysis
is based on the trace provided by a lightweight and selective instrumentation tool [48]. What is more, according
to our experiments in ğ6.2, the block-level accuracy of Adonis is higher than s-VPA by 6.4% on average. For Traic
[51], it is also an instrument-based method. It needs the application’s source code to add its tracing logic and
recompile the instrumented source code. Log-based methods guide the control low recovery by analyzing logs
inserted by developers. The limitation of log-based methods is that they depend on manually placed log printing
statements and, thus, have high development cost [32, 33, 41, 57]. Several methods aim to automatically place log
printing statements [59, 61], they are still semi-automated and require human eforts [12, 28]. Hardware-based
methods recover control low based on traces from hardware features [15, 24, 54, 64]. These methods depend
on Intel-PT so they have high deployment cost in cloud or IoT environments. There are also several hardware
tracing techniques based on ARM [15], but these techniques are limited to in-house debugging.
OS-level traces analysis. OS-level traces (e.g., system logs) are informative and valuable indicators for system
behaviors. Existing work analyzes system logs mainly for anomaly detection [18, 22, 62] and system knowledge
extraction [5, 6]. For example, DeepLog [18] uses LSTM, a popular deep neural network model, to learn system log
patterns and identiies anomalies when system logs deviate from the normal patterns; CSight [5] mines system
logs to infer a model of the system behaviors; PerfAugur [50] is designed to ind performance problems by mining
service logs using specialized features such as predicate combinations; To the best of our knowledge, to date,
there has been no work that uses OS-level traces for control low recovery.
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8 DISCUSSION AND THREATS TO VALIDITY

Threats to internal validity concern confounding factors that could afect the obtained results. The threat
primarily lies in our implementation of existing control low recovery methods. To mitigate this threat, for
Bunkerbuster andGcov, we replicate them by using the code released by their authors and the default conigurations
suggested by them; for Pensieve, we implement it carefully according to the description in its paper as its authors
do not make the code publicly available.
Threats to external validity concern the generalizability of our experimental results. In line with the litera-
ture [47, 55], we focus on C/C++ programs and Linux, to ensure a fair comparison with existing control low
recovery methods. However, our approach is general and can be also applied to other programming languages and
OSes with engineering eforts. For example, for Java, one can collect the external library calls in JVM and recover
the control low using our approach. Another threat to external validity lies in the selection of applications for
evaluation. To mitigate the threat, we use seven desktop applications that are widely-adopted in the control low
recovery literature as well as three real-world IoT applications.
Research comparison between Adonis and log-based methods. Firstly, as shown in our RQ 1, Adonis
achieves a higher accuracy rate because OS-level traces are more informative than logs. OS-level traces record
not only I/O events, but also other program states that may be missed by logs. For instance, in the bug diagnosis
example in Figure 1, the return value of "fopen" at line 13 is not covered by logs, but is captured by OS-level
traces. Additionally, not all program failures output logs that can be used for debugging (like the one shown
in our motivating example in Figure 1). By contrast, OS-level traces are more faithful and informative, as they
capture a broader range of system events beyond the I/O events that logs rely on.

Secondly, maintaining OS-level traces is fully automated, whereas maintaining logging code is time-consuming
and error-prone. When a program undergoes an update, Adonis requires fewer developer eforts to adapt to
the change than log-based techniques. For Adonis, developers only need to regenerate the proxy lib, which
is fully automated and requires negligible human efort. In contrast, log-based techniques require developers
to spend signiicant time maintaining the logging code by adding new log printing statements and modifying
outdated ones. A previous empirical study [58] found that logging code is modiied in a substantial number of
committed revisions (18%), indicating that maintaining logging code is time-consuming. Furthermore, 39% of
log modiications in the study were made to ix inconsistencies between logs and actual execution information
intended to be recorded, suggesting that maintaining logging code is error-prone. Although there are tools to
enhance logging practices (e.g., Log20 [61] and LogEnhancer [59]), these tools are only semi-automated and
cannot easily adapt to software updates. Consequently, developers still rely mainly on themselves to maintain
logging code.

In summary, Adonis outperforms Pensieve and other log-based methods in accuracy and eiciency by leveraging
automated OS-level traces that are more informative and less error-prone than manually maintained logs.
Faithfulness of reproduced Pensieve. The high-level idea of Pensieve is based on the Partial Trace Observation,
which is łjumping directly from an event to its prior causes (without analyzing the intermediate code path)ž.
Pensieve proposes an event-chaining algorithm that uses the Partial Trace Observation to reconstruct a simpliied
partial trace of a failed execution. We strictly follow the design of the event chaining algorithm to reproduce the
Pensieve in our experiments. We implement four types of events as Pensieve has designed, including condition,
location, invocation, and output events. To implement Partial Trace Observation (i.e., jumping from one event to
another), we follow Pensieve’s design that repeatedly explains events, i.e., reasoning the prior events that could
cause the current event. For example, in Figure 1, suppose we get a log message with "file ABC does not

exist." An output event <e1, "O", "file ABC ..."> is generated. We will then try to explain this event e1
by searching for the statement that would output the corresponding log message. And another location event
<e2, L, printf("file %s does not exist.", savename)> is reasoned. Then we will try to explain e2 by
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searching for branch conditions whose basic blocks dominate L on the control low graph. And a condition event
<e3, C, fopen(filename, "r") == NULL> is reasoned. Then, we will search for the statements that assign
values to the variable ilename and the reason for some new location events. This process is repeated until a point
where the remaining unexplained events correspond to external API calls (the user input in our case).

What is more, we also realize that it is unfair to treat the event chain as the control low recovered from Pensieve.
So in our experiments, we also apply pair-wise symbolic execution on pairs of events to recover detailed control
low between adjacent events (note that conditions are stored in each event by design). We cannot reproduce the
experiments of the original paper, because we have diiculty in compiling distributed JAVA programs (which rely
on JVM) to Webassembly bytecode. Whereas we evaluate our reproduced Pensieve using Magma [29], a ground-
truth fuzzing benchmark suite based on real programs with real bugs. The results show that the reproduced
Pensieve could successfully reproduce 38/56 real bugs on 4 applications (libpng, libtif, libxml2, libsndile). Our
results are similar to the results of Pensieve’s paper (13/18 bugs are successfully reproduced).
Coniguration to reduce the trace size of Intel-PT. There are several ways to reduce the trace size of Intel-PT
and "Filter by CR3" [31] is the most relevant and practical coniguration in our case. It reduces the size by limiting
Intel-PT to trace limited number of processes. To our knowledge, Bunkerbuster supports "Filter by CR3," and in
our experiment, we also make it trace the targeted application’s processes.
Tracing long running processes. For long running processes (e.g., an HTTP server), Adonis users can choose to
start or stop tracing at any time (e.g., tracing a speciic HTTP request), and these actions will not afect the traced
program because the tracing is at the system level. So for long running processes, there is no need to record
all OS-level traces for their whole life. As for the length of the trace needed to recreate a usable control low, it
depends on the complexity of the program. In our experiments, for a simple application like "tcas", Adonis can
recreate a usable control low from 14 events; and for a complex application like "sqlite3", it may require 1k 6k
events.
Handle system calls generated by the system itself. When using the API model to infer a system call trace’s
corresponding function trace, Adonis will try to ignore brk and switch events if it cannot ind a proper function
to match the current system call. These system calls come from page fault exceptions and context switches and
are generated by the system instead of the traced application. In this case, these system calls should be ignored.
For example, suppose the current system call trace left to match (infer) is brk, brk, open. In this case, Adonis
cannot ind a proper function in Trie (i.e., the API model) that matches it, so it will ignore the irst brk and try to
match again. It still fails and will ignore the second brk until it can match the open system call.

Applications could also use these system calls, and it does happen in our evaluated applications. There are two
cases when applications may use them. The irst case is that the application intentionally invokes them, which
we call an intentional call (e.g., calling malloc() to allocate memory will generate the brk system call). In this
case, Adonis will not consider the statement that contains an intentional call as a checkpoint (In the function
route, we cannot use these functions for path recovery as we ind that hooking these functions will interfere
with the execution of the program, and in syscall route, we choose not to use these events for path recovery to
protect the consistency of our analysis algorithm). In other words, these intentional calls are treated as normal
statements that will not generate system calls. And the monitored system calls generated by these intentional
calls will be correctly ignored by the API model. The second case is that the application uses a lib function that
may generate these system calls, which we call an unintentional call. For example, function opendir() could
generate a series of system calls, including openat, fstat, brk, brk, and the brk here is an unintentional

call. In this case, our API model has already covered this mapping when we construct the model, i.e., there is
a 5-depth leaf corresponding to this API-to-Trace mapping (textttopendir to the 4-length trace) in the Trie. So
when the current system call trace left to match is openat, fstat, brk, brk, the brk here will not be ignored,
and Adonis will correctly infer this system call trace’s function trace is opendir.
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Scalability of Adonis. Currently, the biggest application we have evaluated Adonis on is sqlite3 (with 236K LoC).
One of the diiculties that prevent us from evaluating Adonis on large applications is that complex applications
are usually built based on build systems (e.g., GNU Make and CMake). And using these systems to compile the
source code to the WASM binary that we could analyze usually produces many compilation errors, and ixing
these errors is time-consuming. In the future, we plan to evaluate Adonis on other complex applications, such as
nginx and OpenSSL.
Handle multithread executions. Our approach inherently supports multithread programs. Note that the
tracing is implemented in the OS layer, so it is easy to get the thread id (tid) of each system call event. For example,
Sysdig, the tool that Adonis uses to trace system calls, supports extracting the thread id of each system call.
And the order of these events can be determined by their timestamps. Similarly, for function trace, we can use
gettid() API to get the thread id of each lib call.

9 CONCLUSION

We have presented Adonis, an instrumentation-free and hardware-independent control low recovery tool for
production environments. By leveraging the informative and easy-to-collect OS-level traces, Adonis is able to
recover crash paths from software failures under 86.8% recall and 81.7% precision. Experiments on representative
desktop and IoT applications show that Adonis has moderate runtime, deployment, and development cost
compared with existing control low recovery techniques. Speciically, Adonis slows down the program by 2.78%
to 3.34%, which is 18.3× lower than the instrument-based baseline. It can be deployed in desktop, IoT, and cloud
environments with negligible modiication so its deployment cost is practically low. The development cost of
Adonis is also reasonable as it is fully automated and requires no extra developer eforts.

ACKNOWLEDGMENTS

This work is supported in part by the National Key Research and Development Program of China under the
grant number 2020YFB2104100 and the National Natural Science Foundation of China under the grant number
62172009. Zhenpeng Chen is supported by the ERC Advanced Grant No.741278 (EPIC: Evolutionary Program
Improvement Collaborators). Ding Li and Zhenpeng Chen are corresponding authors of this paper.

REFERENCES

[1] Agile-IoT. 2022. Awesome-Open-IoT, a curated list of awesome open source IoT frameworks, libraries and software. https://github.com

/Agile-IoT/awesome-open-iot. [Online; accessed 21-June-2022].

[2] Taweesup Apiwattanapong and Mary Jean Harrold. 2002. Selective path proiling. ACM SIGSOFT Software Engineering Notes 28, 1 (2002),

35ś42.

[3] Avast. 2022. RetDec. https://github.com/avast/retdec. [Online; accessed 10-June-2022].

[4] Thomas Ball and James R Larus. 1996. Eicient path proiling. In Proceedings of the 29th Annual IEEE/ACM International Symposium on

Microarchitecture. MICRO 29. IEEE, 46ś57.

[5] Ivan Beschastnikh, Yuriy Brun, Michael D Ernst, and Arvind Krishnamurthy. 2014. Inferring models of concurrent systems from logs of

their behavior with CSight. In Proceedings of the 36th International Conference on Software Engineering. 468ś479.

[6] Ivan Beschastnikh, Perry Liu, Albert Xing, Patty Wang, Yuriy Brun, and Michael D Ernst. 2020. Visualizing distributed system executions.

ACM Transactions on Software Engineering and Methodology (TOSEM) 29, 2 (2020), 1ś38.

[7] Aditya Bhardwaj and C Rama Krishna. 2021. Virtualization in cloud computing: Moving from hypervisor to containerizationÐa survey.

Arabian Journal for Science and Engineering 46, 9 (2021), 8585ś8601.

[8] Marcel Böhme, Ezekiel Olamide Soremekun, Sudipta Chattopadhyay, Emamurho Juliet Ugherughe, and Andreas Zeller. 2017. How

developers debug softwareÐthe dbgbench dataset. In 2017 IEEE/ACM 39th International Conference on Software Engineering Companion

(ICSE-C). IEEE, 244ś246.

[9] Gianluca Borello. 2015. System and application monitoring and troubleshooting with sysdig. (2015).

[10] Tom Britton, Lisa Jeng, Graham Carver, Paul Cheak, and Tomer Katzenellenbogen. 2013. Reversible debugging software. Judge Bus.

School, Univ. Cambridge, Cambridge, UK, Tech. Rep (2013), 1.

ACM Trans. Softw. Eng. Methodol.

https://github.com/Agile-IoT/awesome-open-iot
https://github.com/Agile-IoT/awesome-open-iot
https://github.com/avast/retdec


Adonis: Practical and Eficient Control Flow Recovery through OS-Level Traces • 25

[11] T Britton, L Jeng, C Graham, P Cheak, and T Katyenellenbogen. 2015. Reversible Debugging Software, University of Cambridge. Judge

Business School2013 (2015).

[12] Boyuan Chen et al. 2017. Characterizing logging practices in java-based open source software projectsśa replication study in apache

software foundation. Empirical Software Engineering 22, 1 (2017), 330ś374.

[13] Trishul M Chilimbi, Ben Liblit, Krishna Mehra, Aditya V Nori, and Kapil Vaswani. 2009. Holmes: Efective statistical debugging via

eicient path proiling. In 2009 IEEE 31st International Conference on Software Engineering. IEEE, 34ś44.

[14] Weidong Cui, Xinyang Ge, Baris Kasikci, Ben Niu, Upamanyu Sharma, Ruoyu Wang, and Insu Yun. 2018. REPT: Reverse debugging of

failures in deployed software. In 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18). 17ś32.

[15] Normann Decker, Boris Dreyer, Philip Gottschling, Christian Hochberger, Alexander Lange, Martin Leucker, Torben Schefel, Simon

Wegener, and Alexander Weiss. 2018. Online analysis of debug trace data for embedded systems. In 2018 Design, Automation & Test in

Europe Conference & Exhibition (DATE). IEEE, 851ś856.

[16] Isil Dillig, Thomas Dillig, and Alex Aiken. 2008. Sound, complete and scalable path-sensitive analysis. In Proceedings of the ACM SIGPLAN

2008 Conference on Programming Language Design and Implementation, Tucson, AZ, USA, June 7-13, 2008, Rajiv Gupta and Saman P.

Amarasinghe (Eds.). ACM, 270ś280. https://doi.org/10.1145/1375581.1375615

[17] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. 2005. Supporting controlled experimentation with testing techniques: An

infrastructure and its potential impact. Empirical Software Engineering 10, 4 (2005), 405ś435.

[18] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. Deeplog: Anomaly detection and diagnosis from system logs through deep

learning. In Proceedings of the 2017 ACM SIGSAC conference on computer and communications security. 1285ś1298.

[19] Yoav Einav. 2019. Amazon Found Every 100ms of Latency Cost them 1Sales. https://www.gigaspaces.com/blog/amazon-found-every-

100ms-of-latency-cost-them-1-in-sales. [Online; accessed 24-May-2022].

[20] Raspberrypi Forums. 2022. ARM CoreSight. https://forums.raspberrypi.com/viewtopic.php?t=192728. [Online; accessed 28-June-2022].

[21] Xinyang Ge, Weidong Cui, and Trent Jaeger. 2017. Griin: Guarding control lows using intel processor trace. ACM SIGPLAN Notices 52,

4 (2017), 585ś598.

[22] Siavash Ghiasvand and Florina M Ciorba. 2018. Assessing data usefulness for failure analysis in anonymized system logs. In 2018 17th

International Symposium on Parallel and Distributed Computing (ISPDC). IEEE, 164ś171.

[23] GitHub. 2006. Mac OS X Man Pages - dyld(3). https://developer.apple.com/library/archive/documentation/System/Conceptual/ManPag

es_iPhoneOS/man3/dyld.3.html. [Online; accessed 10-June-2022].

[24] Francesco Giuliari, Alberto Castellini, Riccardo Berra, Alessio Del Bue, Alessandro Farinelli, Marco Cristani, Francesco Setti, and Yiming

Wang. 2021. POMP++: Pomcp-based Active Visual Search in unknown indoor environments. In 2021 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS). IEEE, 1523ś1530.

[25] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed automated random testing. In Proceedings of the 2005 ACM

SIGPLAN conference on Programming language design and implementation. 213ś223.

[26] Gaston H Gonnet and Ricardo Baeza-Yates. 1991. Handbook of algorithms and data structures: in Pascal and C. Addison-Wesley Longman

Publishing Co., Inc.

[27] Honggfuzz Google. 2022. ARM CoreSight Tracing. https://github.com/google/honggfuzz/issues/63. [Online; accessed 28-June-2022].

[28] Mehran Hassani, Weiyi Shang, Emad Shihab, and Nikolaos Tsantalis. 2018. Studying and detecting log-related issues. Empirical Software

Engineering 23, 6 (2018), 3248ś3280.

[29] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. 2020. Magma: A ground-truth fuzzing benchmark. Proceedings of the ACM on

Measurement and Analysis of Computing Systems 4, 3 (2020), 1ś29.

[30] Ningyu He, Ruiyi Zhang, Haoyu Wang, Lei Wu, Xiapu Luo, Yao Guo, Ting Yu, and Xuxian Jiang. 2021. EOSAFE: Security Analysis of

EOSIO Smart Contracts. In 30th USENIX Security Symposium (USENIX Security 21). 1271ś1288.

[31] Intel. 2015. Real Time Instruction Trace. https://www.intel.com/content/dam/www/public/us/en/documents/reference-guides/real-

time-instruction-trace-atom-reference.pdf. [Online; accessed 3-March-2022].

[32] Tong Jia, Pengfei Chen, Lin Yang, Ying Li, Fanjing Meng, and Jingmin Xu. 2017. An approach for anomaly diagnosis based on hybrid

graph model with logs for distributed services. In 2017 IEEE international conference on web services (ICWS). IEEE, 25ś32.

[33] Tong Jia, Lin Yang, Pengfei Chen, Ying Li, FanjingMeng, and Jingmin Xu. 2017. Logsed: Anomaly diagnosis throughmining time-weighted

control low graph in logs. In 2017 IEEE 10th International Conference on Cloud Computing (CLOUD). IEEE, 447ś455.

[34] Michael Kerrisk. 2021. gcov(1) - Linux manual page. https://man7.org/linux/man-pages/man1/gcov.1.html. [Online; accessed

28-June-2022].

[35] Thomas D LaToza and Brad A Myers. 2010. Developers ask reachability questions. In Proceedings of the 32Nd ACM/IEEE International

Conference on Software Engineering-Volume 1. 185ś194.

[36] Heng Li, Weiyi Shang, Bram Adams, Mohammed Sayagh, and Ahmed E Hassan. 2020. A qualitative study of the beneits and costs of

logging from developers’ perspectives. IEEE Transactions on Software Engineering (2020).

[37] lifting bits. 2022. McSema, Framework for lifting x86, amd64, aarch64, sparc32, and sparc64 program binaries to LLVM bitcode.

https://github.com/lifting-bits/mcsema. [Online; accessed 21-June-2022].

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/1375581.1375615
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales
https://forums.raspberrypi.com/viewtopic.php?t=192728
https://developer.apple.com/library/archive/documentation/System/Conceptual/ManPages_iPhoneOS/man3/dyld.3.html
https://developer.apple.com/library/archive/documentation/System/Conceptual/ManPages_iPhoneOS/man3/dyld.3.html
https://github.com/google/honggfuzz/issues/63
https://www.intel.com/content/dam/www/public/us/en/documents/reference-guides/real-time-instruction-trace-atom-reference.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/reference-guides/real-time-instruction-trace-atom-reference.pdf
https://man7.org/linux/man-pages/man1/gcov.1.html
https://github.com/lifting-bits/mcsema


26 • Liu et al.

[38] Xuanzhe Liu, Gang Huang, Qi Zhao, Hong Mei, and M. Brian Blake. 2014. iMashup: a mashup-based framework for service composition.

Sci. China Inf. Sci. 57, 1 (2014), 1ś20.

[39] Xuanzhe Liu, Yi Hui, Wei Sun, and Haiqi Liang. 2007. Towards Service Composition Based on Mashup. In 2007 IEEE International

Conference on Services Computing - Workshops (SCW 2007), 9-13 July 2007, Salt Lake City, Utah, USA. IEEE Computer Society, 332ś339.

[40] Juan Lopez, Leonardo Babun, Hidayet Aksu, and A Selcuk Uluagac. 2017. A survey on function and system call hooking approaches.

Journal of Hardware and Systems Security 1, 2 (2017), 114ś136.

[41] Jie Lu, Feng Li, Lian Li, and Xiaobing Feng. 2018. Cloudraid: hunting concurrency bugs in the cloud via log-mining. In Proceedings of the

2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering.

3ś14.

[42] Linux manual page. 2021. ld.so(8). https://man7.org/linux/man-pages/man8/ld.so.8.html. [Online; accessed 27-May-2022].

[43] Linux manual page. 2021. perf-intel-pt. https://man7.org/linux/man-pages/man1/perf-intel-pt.1.html. [Online; accessed 24-May-2022].

[44] Linux manual page. 2021. strace. https://man7.org/linux/man-pages/man1/strace.1.html. [Online; accessed 27-May-2022].

[45] Dongliang Mu, Yunlan Du, Jianhao Xu, Jun Xu, Xinyu Xing, Bing Mao, and Peng Liu. 2019. POMP++: Facilitating postmortem program

diagnosis with value-set analysis. IEEE Transactions on Software Engineering 47, 9 (2019), 1929ś1942.

[46] Rashmi Mudduluru and Murali Krishna Ramanathan. 2016. Eicient low proiling for detecting performance bugs. In Proceedings of the

25th International Symposium on Software Testing and Analysis. 413ś424.

[47] Peter Ohmann, Alexander Brooks, Loris D’Antoni, and Ben Liblit. 2017. Control-low recovery from partial failure reports. In Proceedings

of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation. 390ś405.

[48] Peter Ohmann and Ben Liblit. 2017. Lightweight control-low instrumentation and postmortem analysis in support of debugging.

Automated Software Engineering 24, 4 (2017), 865ś904.

[49] Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise interprocedural datalow analysis via graph reachability. In Proceedings of

the 22nd ACM SIGPLAN-SIGACT symposium on Principles of programming languages. 49ś61.

[50] Sudip Roy, Arnd Christian König, Igor Dvorkin, and Manish Kumar. 2015. Perfaugur: Robust diagnostics for performance anomalies in

cloud services. In 2015 IEEE 31st International Conference on Data Engineering. IEEE, 1167ś1178.

[51] Anirban Saha, Raju Udava, Mallikarjun Bidari, Mahadeva Prasad, Venkata Raju, and Tushar Vrind. 2021. TraFicÐA Systematic Low

Overhead Code Coverage Tool for Embedded Systems. In 2021 IEEE International Conference on Electronics, Computing and Communication

Technologies (CONECCT). IEEE, 1ś6.

[52] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A concolic unit testing engine for C. ACM SIGSOFT Software Engineering

Notes 30, 5 (2005), 263ś272.

[53] Wikipedia. 2022. Trie. https://en.wikipedia.org/wiki/Trie. [Online; accessed 10-June-2022].

[54] Jun Xu, Dongliang Mu, Xinyu Xing, Peng Liu, Ping Chen, and Bing Mao. 2017. Postmortem Program Analysis with {Hardware-

Enhanced}{Post-Crash} Artifacts. In 26th USENIX Security Symposium (USENIX Security 17). 17ś32.

[55] Carter Yagemann, Simon P Chung, Brendan Saltaformaggio, and Wenke Lee. 2021. Automated Bug Hunting With Data-Driven Symbolic

Root Cause Analysis. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security. 320ś336.

[56] Carter Yagemann, Matthew Pruett, Simon P Chung, Kennon Bittick, Brendan Saltaformaggio, and Wenke Lee. 2021. ARCUS: Symbolic

Root Cause Analysis of Exploits in Production Systems. In 30th USENIX Security Symposium (USENIX Security 21). 1989ś2006.

[57] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and Shankar Pasupathy. 2010. Sherlog: error diagnosis by connecting

clues from run-time logs. In Proceedings of the ifteenth International Conference on Architectural support for programming languages and

operating systems. 143ś154.

[58] Ding Yuan, Soyeon Park, and Yuanyuan Zhou. 2012. Characterizing logging practices in open-source software. In 2012 34th International

Conference on Software Engineering (ICSE). IEEE, 102ś112.

[59] Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan Savage. 2012. Improving software diagnosability via log enhancement.

ACM Transactions on Computer Systems (TOCS) 30, 1 (2012), 1ś28.

[60] Yongle Zhang, Serguei Makarov, Xiang Ren, David Lion, and Ding Yuan. 2017. Pensieve: Non-intrusive failure reproduction for

distributed systems using the event chaining approach. In Proceedings of the 26th Symposium on Operating Systems Principles. 19ś33.

[61] Xu Zhao, Kirk Rodrigues, Yu Luo, Michael Stumm, Ding Yuan, and Yuanyuan Zhou. 2017. Log20: Fully automated optimal placement

of log printing statements under speciied overhead threshold. In Proceedings of the 26th Symposium on Operating Systems Principles.

565ś581.

[62] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Dewei Liu, Qilin Xiang, and Chuan He. 2019. Latent error prediction and fault

localization for microservice applications by learning from system trace logs. In Proceedings of the 2019 27th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 683ś694.

[63] Zhiqiang Zuo, Lu Fang, Siau-Cheng Khoo, Guoqing Xu, and Shan Lu. 2016. Low-overhead and fully automated statistical debugging

with abstraction reinement. In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,

Languages, and Applications. 881ś896.

ACM Trans. Softw. Eng. Methodol.

https://man7.org/linux/man-pages/man8/ld.so.8.html
https://man7.org/linux/man-pages/man1/perf-intel-pt.1.html
https://man7.org/linux/man-pages/man1/strace.1.html
https://en.wikipedia.org/wiki/Trie


Adonis: Practical and Eficient Control Flow Recovery through OS-Level Traces • 27

[64] Zhiqiang Zuo, Kai Ji, Yifei Wang, Wei Tao, Linzhang Wang, Xuandong Li, and Guoqing Harry Xu. 2021. JPortal: precise and eicient

control-low tracing for JVM programs with Intel processor trace. In Proceedings of the 42nd ACM SIGPLAN International Conference on

Programming Language Design and Implementation. 1080ś1094.

ACM Trans. Softw. Eng. Methodol.


	Abstract
	1 Introduction
	2 A Motivating Example
	3 Approach Overview
	4 Design
	4.1 System Call Trace to Function Trace
	4.2 Execution Paths Recovery

	5 Implementation
	6 Evaluation
	6.1 Experimental Settings
	6.2 RQ 1: Accuracy
	6.3 RQ 2: Runtime Cost
	6.4 RQ 3: Deployment Cost
	6.5 RQ 4: Development Cost

	7 Related Work
	8 Discussion and Threats to Validity
	9 Conclusion
	Acknowledgments
	References

